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A study has been made of the unsteady motion of a viscous incompressible liquid between two cylinders, 
the outer one being of arbitrary, slightly non-circular  shape, while the inner one is circular and rotates 
about the origin. Results have been obtained which account for certain phenomena occurring in high 

speed rotary hydraulic bearings. 

Let us examine a flow of viscous incompressible liquid between two cylinders, caused by the motion of the inner 
cylinder. Let the shape of the outer cylinder differ slightly from the circular, i . e . ,  the equation of this cylinder can be 

written in polar co-ordinates as: 

r = r~. if- r2~f(~). (1) 

In plan the shape of the inner cylinder is a circle of radius r 1, Its center describes a circle of radius rls 2, Let the 

plane of the complex variable z represent a transverse section perpendicular to the cylinders. 

In the plane z the region occupied by the liquid is bounded by an arbitrary closed curve having two finite derive 

tives and differing slightly from a circle centered at z i = -rle2exp[i wc~ (t)]. 

Assuming that e 1 and e2 are small quantities of the same Order, we can restrict ourselves to only the first order, 

and the equation of the inner contour becomes 

r = r l  + r~ e~ c os ( 3  - -  ~ ( t ) ) o  (2) 

The region bounded by curves (1) and (2) differs slightly from a circular ring. The mapping of such regions on a circu- 

lar ring has been examined in [1]. Using the properties of ell iptic functions [2], the mapping function can be written 

thus: 
r 

r ---- (z/r,) ex  p [ - -  i ~= (t~l [ 1 + ao ;o + E ~" (z/r,)" (a. -- ib.) - -  

(3) 
- -  ~. (r~/z)n (a. -F ibn) ] -F ; - - %  - -  ~ (z/r~) ~ e x p  [ - -  2i  ~o~(t)], 

n=l 

where small quantities of the first order;:' only have been retained and 

2~ 2n 2~ 

a o =  1/2r162 f(k)dk; a. = 1/=,ff(k)cosnkdk; b . =  1/:.ff(k)sinnkdk; 
0 0 0 

= 

2 

%rL ", ~ - -  [ r l  )2 ," = - 2n(rlr2)n 

In the g plane the region bounded by (1) and (2) becomes a ring bounded by circles p = 1 and p = B(B > 1), where 

2 ] 
1 _ rl 1 - -  r ~ - - r l . e : a o l  

r= d J 

Before writing the equation of motion in the ~ plane, we note that if u and v are the velocity components in the 

directions p and ~0 (g = p exp(iq))) respectively, the continuity equation may be written 

0 p J~/~ u aJ  ~/~ v + - - - 0 ,  
a p O oF 

(4) 

* Because of the awkwardness of the second approximation, the solution is given only for the first approximation. 
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where the Jacobian ~ and the dimensionless 1acobian Ix are given by the relations 

I e='= { 
J = r~ Jx = J d r. r~ 1 + 4gO cos m + 2ao ~o + 

a~ 

+ 2 ~  g,,[(n + 1)O ~ -t- ( n - -  1) 9-"1 [a.cosn(q) + ~) -l- 
n==l 

+ b. sin n (q) + re)l}. (a) 

From the continuity equation we take the dimensionless current function 

u .= r~ ~p-i j - ' / ,  aq) ., v =. r~ ~ J-'/" O ~ 
0q~ O~ 

(6) 

Now the generalized Helmholtz equation (9) may easily be written in the r plane 

Re .D(A'DIJx, ~) _ 1 
Re (A~IJ~) H- Jx P ' D (p, cO) J~ ~ (A~,IJD. (7) 

In formulating boundary conditions for equation (7), we assume, without loss of generality, that c~(0) = 0. Then, 

if at t ime t -- 0 points of the inner circle occupy the position z(0) = rls 2 + rlexp(il)), at t ime t these points will occupy 

the position z(t) = rte z • exp [i wc~(t)] + r~exp(i&) and will have normal and tangential  velocities ~ ' to  rle a sin(O-wcQ and 

w~r~ + c~'~or~s~ cos(8-wcO, respectively. 

In a particular case ~o~ may be zero. When z = rtexp(i~) + r~e~ exp[i wa(t)] 

~. -- exp (i q~) - -  exp  [i (~- -ma) l . [1  + & [ l  exp  (2i 0) - -  ~a) ) l+  aoBo + 

+2 
n=! 

from which we easily find 

+22 

g n [(a~ - -  ibn) exp  (in ~) - -  (a~ -t- ibn) exp ( - -  in ~})1}, 

cos (~ --  ~a) = cos cp + a 0 ~o cos ~ + 

;,~ sin ~ [a n sin n (~ + o~a) b~ cos n (~ + ~ ) l  ~( 1 - -  cos 2qD); 
n=l  

sin (I) - -  ma) =- sin ~ + a o B o sin cp + 
~o 

-+- 2 2 g. cos q~ [a, sin n (q) + ,,e) b n cos n (q) + ~ ) 1  + g sin 2% (8) 

where f~ ~: wl/w. 

where small  quantities of the first order only are retained. 

Then the boundary conditions for ~ may be written 

p =  1, 0 ~ =  _ _  (~2- -  1) ~' B smq~); 
0cp 

O+, __ f~{ l + ao~o W 2Bcosg) _ac.2s + 
09 ,,=l 

%- b. sin n (q~ + ~ ) ]  / q ~'' (~  - -  1) g cos q~; 
1 

a - - =  a,, =o, 
Op am 

(9) 
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Now, for the full solution we require the obvious condition: that the hydraulic pressure be a periodic function of 
the variables ~ or &. Equation (7) is unsteady, and it is therefore necessary to add an initial condition: ,)(0, pp) is 
given when t = 0. Equation (7) is a very complex nonlinear equation. This paper deals only with the case when 
~1 and e~ are small quantities and si a (i = 1, 2) may be neglected in comparison with el; the same applies to 6 and 6 n 
by definition. The solution of (7) takes the form of a power series in the small parameters 6 and 6n, and terms of higher 
order than a chosen term are neglected. The solution of (7) is sought in the form 

(lO) 

where q)0 -= ~__---~- -~- 9 ~ In p + const is the solution of (7) for the case when 6 and 6n (n = 0, 1, 2 . . . .  ) 

are zero, with corresponding boundary conditions. By substituting (10) in (7) and (9) respectively we obtain in the usual 
way the following series of equations together with their boundary conditions: 

R e Q  ( i  92 )0A"~ ~ Re 0A'~I 
Ak,Sx + }~ _ 1 }2 0 q) Or 

' 8 ( s z _  1) ~ 1 -.2 osin~, = ()- 

p = 1, 0 % , 0"r - - =  - - a  (}2__ I) sin % - - b ' ( }  ~ - -  1 ) - - 2 f a l  coscp; 
0q0 09 

Ak,%o + 

p - -  . . . .  o ;  

O~p ap 

( ~2 ) 0A'~10 OA',51o Re f~ 1 - -  Re .  = 0; 
}= - -  1 9 2 0 ~ Ot 

r0 q)lo 0 '~lo 
9 =  1, - - : 0 ,  - -  Qao:  

Oqo op 

P = ~ ;  0 %  0 %  _ 0 ;  
Oqo O 9 

Reg~ (i ~_~] OA,h~ ReOk%, 

__. 4Re_.___~_~ n ~-- 1 - -  --~' 
}2__ 1 _ 1 p" ] 

X [(n + 1) p" + (n - .  1) p-n] Jan sin n (qD + (.~) - -  G cos n (~ + o~)1 = 0; 

p = l ,  0qq~ __0, 
0q~ 

O qh~ _ 2~q n [a~ cos n (~p § ma) + b~ sin n (~ 4- ~aa)l; 
Op 

p = g ,  O,h, 0 %  = o  ( n = l ,  2, 3 . . . ) .  
Oqo O9 

(11) 

Case a '=  const. We shall confine ourselves to the particular case mentioned above, as being of most interest from the 
applied point of view. Let us assume that the inner cylinder rotates about the origin of coordinates with a constant an- 

gular velocity w, i . e . ,  that c4t) = t and a '  = 1. 
partially simplified: 

R e ~  1 --  
AAqh4- ~ 2 _ 1  p u ' j  0 ~  

0~ l  
p = l ,  

0q~ 
= - -  (~! - -  1) sin % 

In this case some of the equations and boundary conditions of (11) are 

ReQ2 ( 1 - -  [3~ / 9 s i n q e = 0 '  

0 cpl = [([y - - t  ) - -  2~t cos "~: (12) 
0p  
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~=~,  

- - - 4  L 

~"- ) O A91o _ R e . O .  1 - -  0,: 0@1 0 9 ~ _ 0 ;  AA"Sao+ ~2__1 , O~p 
0qD O 9 ~" ' 

p 1 O ',Dlo 0, O q~lo ao o. 
Oq~ Op 

O %0 O % 
~ = ~ ,  = -  + = o ;  

a cp Op 

AA"a'n4" _ _ i ~  k l 3  Ref~ ( 1 -  p2~~ ~j 0A*,~0q0 Re OAq~,~Ot -- 

n 1 - -  - - 1  [(n -t- I) f,n + (n .... 1) r ,-"lX 
~ ' - -  1 ~ - -  1 r,- 

X Jan sin n (q~ -t- ~ t) - -  bn cos n (qo -i- ~ t)] = O; 

:,= 1, ..O'gh~ --0,  __0%~ = ---~OQn {ancosn(cp + mt)-l-b,~sinn(~ -/ ~,, !)} 
Oeo a 9 

,~,=~, 0 %  _ 0 %  =0 .  
aq~ 0p 

Because of their structure a solution of (12), (13) and (14) should be sought in the form: 

(18) 

(14) 

'31 ~- - -  pa COS ~ -Jr- Real {f (p) exp ( - -  i qo)} _ ho, (p); (15) 
} ' - -  1 

,,51o = aofl  [ 1 p " - _ ~ 2 1 n p ] q _ h o 2 ( p ) ;  (1G) 

f~ 
%, -- - -  0 ~ [On - -  P-" ln] {G cos n (rp + ~ t) + bn sin n (q~ -t- (o t)} q- 

+ Real{ [,, (P) (G if" ibn) exp[  --  i(n rO § 0~ t)l} + h l n  (0), (17) 

where f(p) is defined as in [4] and [5], and in(P) may be determined by substituting (17) in (14) to obtain the following 
equation and boundary conditions: 

~ n 2 ( 1 4 .  i~ 2Re.Q ) p - 2 ]  
' ' n ( [ ~  ~ -  1)  gn = O; 

+ 2_ ::_ ': 

~q 
L(1)  . . . .  ( 1 - -  l~); 

[3"-- 1 

[ ' ~ ( 1 ) = - - 2 f ] n - - [ 2 ( l - - l ~ ) q - n ( l  +t~)] ..(2 . 

= - - 

where l I =0 and l n=  I whenn > I .  

:,, (,~) = 

f~ 

~ " m  1 

~ 2  1 

- -  ( ~ n + "  - -  , ~ - " + ~  l . ) ;  

[(n + 2) ~.+1 + l. (n-- 2) ~-~+q, 

The general solution of (! 8 ) may be written in the form 

:~ (p) = A~ p + B,, p-~ + G G  (P) -F D~ L.~ (o), 

(18) 

(19) 

(2o) 
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where Iln(p ) and Izn(p ) are expressed in paral lel  manner in terms of Bessel functions (5). To determine A n, B n, Cn, 
D n we substitute (20) in (19) to obtain an algebraic  system of l inear equations, Solving this system, we obtain: 

A n--=f~(8. Re,  n), Bn=Fz(~ ,  Re, n), 

C,,--=Fa(,3, Re,  n)  n D,,=F4([I , Re,  n).  

and 

Because of the awkwardness of functions Fi(8, Re, n) they have not been written out. 

By virtue of the boundary conditions for the respective equations, and the obvious condition (hydraulic pressure is 
a periodic function of ~o), functions hij(p) are equal to arbitrary constants. Thus the solution is determined correct to 
arbitrary constants, which have no influence on the veloci ty  f ield.  

Knowing the function ~,  we can determine the force to which the inner cyl inder is subjected in its motion.  

Determinat ion of force. We introduce the following fixed coordinate system: the x axis is directed along the line join-  

ing the origin of coordinates to the center of the inner cylinder,  and the y axis is perpendicular to i t .  

The expressions for the projection on the moving axes Ox and Oy of the principal vector of the forces acting on the 
inner cylinder are: 

2r. 

p., ------ S[Ppp cos (x, p) + Pp~ cos(x, r J'/= (1, r d % 
o 

2~ (2I) 

PU --= ;[POP cos  (y, 9) + Pp~ cos  (y, r J'/'~ ( I, ep) d % 
0 

Carrying out the s imple,  but laborious calculat ions,  we obtain expressions for the forces: 

P~ = %/)1. (Re, ,~) d- Reel [~1P2. (Re, 8) (al + ibl) exp (i ~ t)i, 

Pv = e2Ply (Re, 8) q- Reel [~ P2v (Re, 6) (al + ib 0 exp (i m t)l. (22) 

Because the expressions for Pix(Re, 8) and Ply(Re, 8) are very unwieldy, they have not been given in this paper.  

Only the first Fourier coefficients,  boundary deviat ion functions linked with the orthogonali ty of sines and cosines, 
enter into formula (22). The real part of (A + iB) = A, where A and B are real .  

It follows from (22) that in its motion the inner cyl inder  experiences a force di rect ly  proportional to the deviat ion 

of the inner cylinder from the coordinate origin and to the deviat ion of the outer cyl inder from the circular .  Only two 
Fourier coefficients enter into the formuia for the force. If s 1 is put equal to zero, we have the case of a cyl inder ro- 
tat ing within a cyl inder .  It follows from (22) that, in addit ion to the force acting perpendicular  to the l ine of centers, 

there is a force directed along the line of centers.  This result coincides with the conclusions of others [6] who have 
studied the influence of inert ia  forces on the inner cyl inder .  By means of (22) we can evalua te  the contribution to these 

forces arising from deviat ion of the shape of the outer cyl inder from the circular .  

Some l imit ing cases. Let us examine some l imit ing cases of the results obtained.  In the first place,  let us take the 

case Re = 0. Then (7) becomes 

A (a,~/g,) = o (23) 

with boundary conditions (9). Let us assume that s 1 = 0, then c~' = const, and ~ is sufficiently smal l .  Putting the solu- 
t ion (23) in the form of a series, and again confining ourselves to the first terms of the expansion, for the force exerted 
by the liquid on the inner cyl inder  we arrive at conclusions which coincide  with the Chaplygin-Ioukowski theory for cor-  

responding assumptions [7]. 

Let us consider another l imi t ing case.  Let Re become arbi t rar i ly  large.  Writing down the asymptot ic  solution of 

(7) for arbi t rar i ly  large Re, and using (22), we obtain the following formulas for the principal  vector of the forces in di-  

mensionless form 

Pu=O' P x = r ' [  4~22- (~2-3)~2a'+  ~ 23f~2- 1 ,d- (~u--2~l) ~ ]~ .  (24) 
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In contrast to the  Chaplyg in-Joukowski  theory,  in this l i m i t i n g  case ,  we  find no force perpendicular  to the l ine  of c e n -  

ters .  

NOTATION 

1/co - characteristic t ime associated with motion; e I and ~2 - dimensionless constants; c~(t) - arbitrary functions 
of t ime; Re = r ~ / v  - Reynolds number; v - kinematic vicsocfty; ~01 - angular velocity of rotation of inner cylinder 

about its center. 
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